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a b s t r a c t

Transport is a fundamental aspect of biology and peristaltic pumping is a fundamental
mechanism to accomplish this; it is also important to many industrial processes. We pres-
ent a variational method for optimizing the wave shape of a peristaltic pump. Specifically,
we optimize the wave profile of a two dimensional channel containing a Navier–Stokes
fluid with no assumption on the wave profile other than it is a traveling wave (e.g. we
do not assume it is the graph of a function). Hence, this is an infinite-dimensional optimi-
zation problem. The optimization criteria consists of minimizing the input fluid power (due
to the peristaltic wave) subject to constraints on the average flux of fluid and area of the
channel. Sensitivities of the cost and constraints are computed variationally via shape dif-
ferential calculus and we use a sequential quadratic programming (SQP) method to find a
solution of the first order KKT conditions. We also use a merit-function based line search in
order to balance between decreasing the cost and keeping the constraints satisfied when
updating the channel shape. Our numerical implementation uses a finite element method
for computing a solution of the Navier–Stokes equations, adjoint equations, as well as for
the SQP method when computing perturbations of the channel shape. The walls of the
channel are deformed by an explicit front-tracking approach. In computing functional sen-
sitivities with respect to shape, we use L2-type projections for computing boundary stres-
ses and for geometric quantities such as the tangent field on the channel walls and the
curvature; we show error estimates for the boundary stress and tangent field approxima-
tions. As a result, we find optimized shapes that are not obvious and have not been previ-
ously reported in the peristaltic pumping literature. Specifically, we see highly asymmetric
wave shapes that are far from being sine waves. Many examples are shown for a range of
fluxes and Reynolds numbers up to Re ¼ 500 which illustrate the capabilities of our
method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Peristalsis is present in the esophagus, intestines, and other parts of the human body [1–3] and is able to move material
through the body by sending traveling waves of contraction along the esophageal and intestinal walls. Peristaltic pumping
falls into the category of a positive displacement pump because the channel/tube walls deform in order to move the interior
fluid. Peristalsis is common in other biological contexts, such as blood flow in small vessels [4] and the transport of urine
from the kidney to the bladder. In the female reproductive system, embryonic transport is achieved by peristalsis in the
intrauterine tubes. In this case, understanding the causes of inefficient pumping may help illuminate some causes of
infertility [5,6]. Another example occurs in the respiratory system. The transport of mucus from the lungs [7] may depend
. All rights reserved.
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on peristalsis and it would be useful to know what affects this transport in order to better understand causes of diseases,
such as cystic fibrosis. In addition, peristalsis may be linked to early lung development in the embryo [8].

In industry, peristalsis is used in mechanical pumps to move very viscous or non-Newtonian fluids through flexible
deformable tubes. One common method is to have ‘rollers’ move over and locally compress the tube to induce a net motion
of the fluid. Knowing the optimal shape of the deformation would be useful for designing the mechanical parts of the pump,
like the rollers, so as to take advantage of efficient pumping profiles.

There is a large body of work on the fluid dynamics of peristalsis. Various studies seek to isolate characteristics of pump-
ing, such as trapping of fluid into boluses and reflux of particles against the peristaltic wave [9–11], elastic wall effects on
pumping [12–14], and analysis of swimming micro-organisms [15]. Some experimental work on peristalsis can be found
in [16–18,5]. More recently, peristalsis of non-Newtonian fluids has been investigated [19–25] and is important for under-
standing real biological systems. However, little work has been done on optimizing peristalsis, though some comparisons
and analysis of different wave shapes are given in [26–28].

In this paper, we present a variational method for optimizing peristaltic pumping in a two dimensional periodic channel
whose upper and lower walls move to pump fluid. No prior assumption is made on the wall motion, except that it is a trav-
eling wave in shape. Hence, we consider an infinite-dimensional optimization problem. To the best of our knowledge, opti-
mizing the general wave shape in peristaltic pumping has never been done. Our optimization algorithm consists of finding
the shape of the traveling wave such that the input fluid power is minimized subject to a given amount of mass flux and
given channel volume. Wall deformations are not penalized in this paper. We first pose the method at the continuous level
and use a sequential quadratic programming (SQP) method to find a minimizer. We do not assume a form for the wave shape
nor do we assume it is a graph. Our numerical implementation uses explicit front-tracking for deforming the channel walls,
with occasional re-meshing of the domain, and a finite element method for solving the fluid PDE and adjoint systems. In
computing the sensitivities of the cost and constraints, we use computationally cheap L2-type projections for computing
boundary stresses and curvature. We also give an error estimate for our boundary stress approximation. As a result, we
are able to compute optimal peristaltic pumping profiles not previously reported in the literature. In particular, for high pre-
scribed flux, we find wave profiles that are not graphs of a function. Most wave-forms assumed in the literature have rela-
tively mild displacements [26–28,12–14] or are sinusoidal [9–11,25]. Moreover, our optimization method can be generalized
to include more complicated fluid models, such as generalized Newtonian and viscoelastic flow models.

In Section 2 we state the optimization problem. Section 3 provides a brief overview of shape differential calculus and Sec-
tion 4 gives a sensitivity analysis for peristaltic pumping (Appendix gives further details). Our continuous level optimization
algorithm is given in Section 5 followed by the details of our finite element implementation in Section 6. We conclude with
our numerical results in Section 7 and a brief discussion in Section 8.

2. Fluid problem

First we state the physical problem. Consider a periodic channel of length L filled with fluid (see Fig. 1). Let XALL be a large
‘hold-all’ domain that contains X. We call X the fluid domain with positively oriented boundary given as a union @X ¼ C [ CP

of disjoint open sets C and CP, where C refers to the top and bottom walls of the channel and CP denotes the periodic end-
sections of the domain. Note that C and CP consist of two disjoint pieces: C :¼ Cþ [ C� and CP :¼ CþP [ C�P . The upper and
lower boundaries Cþ; C� may or may not be mirror images. The shape of the boundary C is time-varying in the lab frame.
We assume this motion to be a traveling wave in the direction e1 (along the channel), with wave speed denoted by c > 0.

2.1. Governing equations in lab frame

Henceforth, we scale lengths by L, velocities by c, and time by T :¼ L=c. Thus, the length of X is 1 in the e1 direction. Let the
fluid flow (in the fixed lab frame) obey the unsteady Navier–Stokes equations. Writing in non-dimensional form gives:
@tuþ ðu � rÞu� ½r � r� ¼ 0; in X;

r � u ¼ 0; in X
ð1Þ
where r is the stress tensor and u is the velocity. The Newtonian stress tensor is defined by
r :¼ �pI þ 1
Re

DðuÞ; ð2Þ
where p is the pressure, DðuÞ :¼ ruþ ðruÞy (i.e. the symmetrized deformation gradient), and Re ¼ qcL=l. Note:q andl are the
density and dynamic viscosity, respectively. We do not specify the velocity boundary conditions yet; this is addressed in the
next section.

2.2. Governing equations in wave frame

We rewrite the fluid equations with respect to a frame of reference translating at the wave speed c. Define the coordinate
transformation from the lab frame x to the wave frame ~x as
~x :¼ x� e1t; ð3Þ



Fig. 1. Peristaltic pumping of a Navier–Stokes fluid in dimensional variables. Top figure shows a 2D channel with upper and lower boundaries moving as a
traveling wave. Bottom figure depicts the same setup, except in a coordinate frame moving with the traveling wave. The wavelength of the traveling wave is
assumed to be L with speed c and period T :¼ L=c. Note: XALL is a set containing X (only partially shown). The boundary of X is partitioned as @X ¼ C [ CP,
where C and CP are disjoint open sets. We denote the top and bottom walls by Cþ and C� , respectively; likewise, the right and left ends are denoted by CþP
and C�P . The boundary is assumed to be positively oriented, with unit tangent vector s; the outward unit normal vector is denoted m. The boundary
conditions for the fluid (in the lab frame) consist of the no-slip condition for velocity on C and periodic conditions for velocity and pressure on CP. Since the
shape of the wave is assumed to be static (see Section 2.2), the velocity is tangential on C in the wave frame. Moreover, assuming the walls are inextensible
implies that the velocity on C is proportional to the tangent vector.

1262 S.W. Walker, M.J. Shelley / Journal of Computational Physics 229 (2010) 1260–1291
where the speed of translation is scaled to the non-dimensional unit wave speed. Next assume that, relative to the wave
frame, the fluid variables
~uð~xÞ :¼ uðt;xÞ � e1;

~pð~xÞ :¼ pðt; xÞ;
ð4Þ
are independent of time. The fluid stress in the wave frame is also independent of time, and is given by (Galilean invariance)
~rð~xÞ :¼ �~pð~xÞI þ 1
Re

D~xð~uð~xÞÞ ¼ �pðt;xÞI þ 1
Re

Dxðuðt;xÞÞ ¼ rðx; tÞ: ð5Þ
The motion of C is assumed to be independent of time when viewed in the wave frame. This gives that the velocity ~u is com-
pletely tangential (on C). In addition, we assume that C is (locally) inextensible, implying that velocity is proportional to the
oriented unit tangent vector s (see Fig. 1).

Deriving the transformed system proceeds as follows. Since ~uð~xÞ ¼ uðt; ~xþ e1tÞ � e1, we have that
0 ¼ @t ~uð~xÞ ¼ @tuðt; ~xþ e1tÞ þ ðe1 � rxÞuðt; ~xþ e1tÞ;
¼ @tuðt; xÞ þ ðe1 � rxÞuðt;xÞ:

ð6Þ
Ergo, the fluid momentum equation (starting in the lab frame) becomes
@tuþ ðe1 � rÞuþ ððu� e1Þ � rÞu� ½r � r� ¼ ððuðt;xÞ � e1Þ � rÞu� ½r � r� ¼ ð~u � rÞ~u� ½r � ~r� ¼ 0; ð7Þ
where in the last line we transform to the wave frame. Therefore, after dropping the � notation, the governing fluid equa-
tions in the wave frame now reads as:
ðu � rÞu� ½r � r� ¼ 0; in X;

r � u ¼ 0; in X;

u ¼ þs; on Cþ;

u ¼ �s; on C�;

ð8Þ
with periodic boundary conditions for u and p applied on CP. Assuming sufficient smoothness of the velocity implies
rjCþP ¼ rjC�P . Note that u ¼ �s on C because s is the positively oriented tangent vector. Note that this is the free-pumping re-
gime of peristalsis because there is no net rise in pressure per wavelength of the channel.
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2.3. Relevant quantities

Our optimization algorithm will involve three main quantities: (1) the average mass flow rate Q produced by the pump in
the fixed lab frame, (2) the net power J dissipated by the pump, and (3) the total volume (area) A in one wavelength of the
channel. These quantities are described in the following sections.

In order to avoid excessive notation when writing integrals, we will usually refrain from writing the function arguments,
such as the ðx; yÞ coordinates of a vector field. In this case, we also drop the differential notation, i.e. dx, dy. The function argu-
ments and differential measure are implied by the domain of integration.

2.3.1. Mass flow rate
The non-dimensional average rate of mass flow per wavelength in the lab frame is given by
QðX;uÞ ¼
Z 1

0

Z
HðxÞ
ðuðx; yÞ þ e1Þ � e1 dydx ¼

Z
X
ðuþ e1Þ � e1 ¼

Z
X

u � e1 þ jXj; ð9Þ
where HðxÞ is a vertical slice of X at x and u is the fluid velocity in the wave frame. The dimensional mass flow rate per wave-
length is obtained by scaling: qcL � Q . If the shape of the channel is a rectangle, then u ¼ �e1, and so Q ¼ 0. If the channel is
fully occluded (i.e. the top and bottom walls touch), then Q ¼ jXj. For all other channel shapes, 0 6 Q 6 jXj.

2.3.2. Power loss
The non-dimensional fluid input power functional (in the lab frame) is given by
JðX; ðu; pÞÞ ¼
Z
@X
ðuþ e1Þ � rm ¼

Z
C
ðuþ e1Þ � rm; ð10Þ
where m is the outer unit normal to the fluid domain X, and u and r are the velocity and stress tensor in the wave-frame. The
dimensional power loss is obtained by scaling: qc3L � J. Note, J > 0.

2.4. The minimization problem

The optimization problem is as follows. We wish to find the shape of the fluid domain X such that J is minimized subject
to the constraints that Q ¼ CQ and jXj ¼ CA for fixed positive constants CQ and CA. More precisely, let O be the set of admis-
sible shapes for the fluid domain X:
O ¼ X � XALL; X is periodic and simply connected : QðX;uðXÞÞ ¼ CQ ; jXj ¼ CA; C is C2
n o

; ð11Þ
where ðu; pÞ is a solution of (8). Then the minimization problem is stated as follows. Find an optimal pair ðX�; ðu�; p�ÞÞ such
that
JðX�; ðu�ðX�Þ;p�ðX�ÞÞÞ ¼min
X2O

JðX; ðuðXÞ;pðXÞÞÞ; ð12Þ
where ðuðXÞ; pðXÞÞ solves (8) on X. The set O is general, in that we are not restricting the optimization to a small set of
parameters (i.e. we are not assuming a known form for C nor do we assume that C is the graph of a function; see our results
in Section 7).

3. Overview of shape sensitivity analysis

In order to optimize the general shape of the peristaltic pump, we make use of the shape derivative via the speed method.
This gives us a method of deforming (or transforming) the fluid domain that is convenient for computing the derivative of
domain or boundary functionals with respect to the deformation. In this section, we briefly review the general shape deriv-
ative for 2 or 3 dimensional domains; details can be found in [29–34]. In the following sections, and in computing the shape
derivatives (see Section 4), we assume sufficient smoothness to make the arguments valid.

3.1. The velocity (speed) method

Let X be a smooth domain, whose shape we wish to optimize and is contained in a larger, fixed ‘hold-all’ domain:
X � XALL � Rd for d ¼ 2 or 3 (see Fig. 2). Let Vðs; �Þ : XALL ! Rd be a smooth velocity field for s 2 ½0; sfinal� and assume it is
smooth with respect to s and V ¼ 0 on @XALL. Next, let a 2 XALL be fixed and Uð�; aÞ : ½0; sfinal� ! XALL be a vector function of
s that satisfies the initial value problem:
d
ds

Uðs; aÞ ¼ Vðs;Uðs; aÞÞ; s 2 ½0; sfinal�;

Uð0; aÞ ¼ a; a 2 XALL:

ð13Þ



V(s, x)

Ω

ΩALL

a

Φ(s; a)

Γ

Fig. 2. Velocity field V deforms a domain. The deformation evolves for increasing s (i.e. s is a ‘fake’ time variable). The Lagrangian flow map is denoted Uðs; �Þ
and is the map that takes points in the initial configuration to the deformed configuration.
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The vector a can be thought of as a material label for the point Uðs; aÞ parameterized by s. Thus, Uðs; �Þ : XALL ! XALL and
Uðs; aÞ tracks the motion of a as s varies. Note that Uðs; �Þ is a smooth bijective transformation that depends on V and
Uð0; aÞ is the identity map on XALL. We use this map to define a parameterized family of domains and corresponding bound-
aries by Xs ¼ Uðs; XÞ and Cs ¼ Uðs; CÞ. Note that Uð0; XÞ ¼ X0 ¼ X and Uð0; CÞ ¼ C0 ¼ C. In the following sections, we review
how functionals that depend on Xs vary with changes in s.

3.2. Shape derivative operations

Let JðXsÞ :¼
R

Xs
f ðXsÞ. The material derivative (first variation) of the functional J depending on Xs is defined as
dJðX; VÞ :¼ lim
s!0

JðXsðVÞÞ � JðXÞ
s

: ð14Þ
The material derivative of a function that depends on Xs (e.g. f ðXsÞð�Þ : Xs ! R) is
_f ðX; VÞð�Þ :¼ lim
s!0

f ðUðs; �Þ; sÞ � f ð�; sÞ
s

: ð15Þ
The shape derivative of a function (Eulerian partial derivative) is simply
f 0ðX; VÞ :¼ _f ðX; VÞ � rxf ðXÞ � Vjs¼0: ð16Þ
In other words, the shape derivative is just the partial derivative with respect to deforming the domain but without the con-
vective effect of moving the domain. This is especially important if f is the solution of a PDE in the domain X.

In the rest of this paper, we will drop the ‘s ¼ 0’ notation in Vjs¼0 and just write V. Only the value at s ¼ 0 is important for
our calculations. We now state the Reynolds transport theorem in the context of shape differentiation, which says that the
material derivative in (14) can be written as
dJðX; VÞ ¼
Z

X
f 0ðX; VÞ þ

Z
C

f ðXÞðV � mÞ: ð17Þ
Note that in standard fluid mechanics, f 0 is just the partial derivative of f with respect to time.

3.3. The Hadamard–Zolésio structure theorem

The following theorem states that the shape derivative of a functional can always be represented as an integral on the
boundary of a measure multiplied by the normal component of the perturbation.

Theorem 1 (See Theorem 3.5 and Corollary 1 in [30]). The Eulerian (or directional) derivative of a shape functional J always has
a representation of the form
dJðX; VÞ ¼ hg;V � miC;
where h�; �iC is a duality pairing on C and g is a measure defined on C. In the case when g is sufficiently smooth, we have
dJðX; VÞ ¼
Z

C
gðV � mÞ:
We make note of Theorem 1 because our shape derivative calculation slightly deviates from this (see Remark 1).
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4. Sensitivity analysis for peristaltic wave shape

In the following, we note that Cþ and C� are disjoint periodic surfaces (curves). So any integration by parts on Cþ (or C�)
will have no boundary terms.

4.1. Computing the shape derivative of J

We can manipulate J into an integral over the bulk:
Jðu; pÞ ¼
Z
@X
ðuþ e1Þ � rm;¼

Z
X
fðu � rÞu� ½r � r�g � ðuþ e1Þ þ

Z
X

e1 � ½r � r� þ
Z
@X

u � ðrmÞ;

¼
Z

X
½ðu � rÞu� � ðuþ e1Þ þ

Z
X

r : ru ¼
Z

X
r : ru; ð18Þ
where we used (8), divergence theorem, integration by parts, and (2). By (84), the convective term vanishes, and the remain-
ing term is the rate of viscous dissipation.

4.1.1. PDE for the shape derivative
Computing dJ will require the shape derivative of the solution ðu; pÞ of (8), which is denoted ðu0; p0Þ and solves the follow-

ing linear, variable coefficient PDE:
ðu0 � rÞuþ ðu � rÞu0 � ½r � r0� ¼ 0; in X;

r � u0 ¼ 0; in X;

u0 ¼ _u� ½ðV � rÞu�; on C;

ð19Þ
where the boundary condition on C is given by the definition of u0; _u is given by Eq. (79) in Appendix. Just as in (8), we have
periodic boundary conditions on CP and the stress tensor r0 is similarly given by
r0 ¼ �p0Iþ 1
Re

Dðu0Þ: ð20Þ
One can derive (19) by (formally) applying the shape derivative operator to (8) and commuting derivatives.

4.1.2. Computing dJ
Making note of the definition of r and periodicity, we have:
dJ ¼
Z

X
r0 : ruþ

Z
X

r : ru0 þ
Z

C
ðV � mÞr : ru;

¼ �
Z

X
ðr � r0Þ � uþ

Z
@X

u � r0m �
Z

X
ðr � rÞ � u0 þ

Z
@X

u0 � rm þ
Z

C
ðV � mÞr : ru;

¼ �
Z

X
f½ðu0 � rÞu� þ ½ðu � rÞu0�g � uþ

Z
C

u � r0m �
Z

X
½ðu � rÞu� � u0 þ

Z
C

u0 � rm þ
Z

C
ðV � mÞr : ru;
where we performed an integration by parts and used (19) and (8). Next, by (85), (87) and (16), we get
dJ ¼
Z

C
u � r0m þ

Z
C

u0 � rm þ
Z

C
ðV � mÞr : ru;

¼
Z

C
fu � r0m þ _u � rm � ðV � mÞ½ðm � rÞu� � rm � ½ðV � rCÞu� � rm þ ðV � mÞr : rug;

¼
Z

C
fu � r0m þ _u � rm � ðV � mÞ½ðm � rÞu� � mðm � rmÞ � ðV � mÞ½ðm � rÞu� � sðs � rmÞ

� ½ðV � rCÞu� � rm þ ðV � mÞðs � DðuÞmÞðs � rmÞg;

¼
Z

C
fu � r0m þ _u � rm � ½ðV � rCÞu� � rm þ ðV � mÞ½s � DðuÞm � ½ðm � rÞu� � s�ðs � rmÞg;

¼
Z

C
fu � r0m þ _u � rm � ½ðV � rCÞu� � rm þ ðV � mÞð½ðs � rÞu� � mÞðs � rmÞg;
where we used (80) and (83). Note that ½rCu : r� ¼ s � rð@suÞ ¼ ðs � rmÞ½ðs � rÞu� � m, becauserC ¼ s@s for a 1D boundary. So we
get:
dJ ¼
Z

C
u � r0m þ _u � rm þ ðV � mÞrCu : r� ½ðV � rCÞu� � rm; ð21Þ
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4.1.3. Adjoint PDE for dJ
The r0m term in (21) depends implicitly on the shape perturbation V. Therefore, to avoid computing a solution of (19) for

every perturbation V, we rewrite that term in a more convenient form using the following adjoint problem. Let S be the stress
tensor:
S ¼ �pI þ 1
Re

DðrÞ; ð22Þ
where ðp; rÞ solves the following adjoint PDE:
� ½rr�yu� ðu � rÞr� ½r � S� ¼ 0; in X;

r � r ¼ 0; in X;

r ¼ u; on C;

ð23Þ
with periodic boundary conditions applied on CP. Note that ½rr�yu ¼ ½@irj�uj using Einstein summation. In the next section,
we write dJ in a way that only involves solving (23) once for all perturbations.

4.1.4. Evaluating dJ with the adjoint
We make use of the shape derivative PDE (19) and integration by parts:
0 ¼
Z

X
fðu0 � rÞuþ ðu � rÞu0g � r�

Z
X
ðr � r0Þ � r;

¼ �
Z

X
f½rr�yuþ ðu � rÞrg � u0 þ

Z
C
ðu0 � mÞðu � rÞ þ

Z
X

r0 : rr�
Z
@X

ryr0m;

¼
Z

X
ðr � SÞ � u0 þ

Z
X

1
Re

Dðu0Þ : rr�
Z

X
p0ðr � rÞ �

Z
C

ryr0m þ
Z

C
ðu0 � mÞðu � rÞ;

¼
Z

X
ðr � SÞ � u0 þ 1

Re

Z
X

Dðu0Þ : rr�
Z

C
ryr0m þ

Z
C
ðu0 � mÞðu � rÞ;

¼
Z

X
ðr � SÞ � u0 þ

Z
X
ru0 :

1
Re

DðrÞ �
Z

C
ryr0m þ

Z
C
ðu0 � mÞ;

¼
Z

X
ðr � SÞ � u0 þ

Z
X
ru0 : S�

Z
C

u � r0m;
where we used the symmetry of Dð�Þ, the original PDE (8), the adjoint stress (22) and solution (23), (84), and the fact that
r � u0 ¼ 0. Performing another integration by parts, we have
0 ¼
Z

X
ðr � SÞ � u0 þ

Z
X
�u0 � ðr � SÞ þ

Z
@X
ðu0ÞySm �

Z
C

u � r0m ¼
Z

C
u0 � Sm �

Z
C

u � r0m:
Therefore (see (21)), using the shape derivative PDE (19) gives
dJðu;p; VÞ ¼
Z

C

_u � rm þ u0 � Sm þ ðV � mÞrCu : r� ½ðV � rCÞu� � rm ¼
Z

C

_u � ðrm þ SmÞ � ½ðV � rÞu� � Sm þ ðV � mÞrCu

: r� ½ðV � rCÞu� � rm: ð24Þ
Referring to the appendix (79), we have that _u ¼ ðu � sÞðm � @sVÞm (note: ðu � sÞ ¼ �1 on C). Thus, further manipulation of (24)
leads to
dJ ¼
Z

C
ðu � sÞðm � @sVÞðm � ½rm þ Sm�Þ � ½ðV � rÞu� � Sm þ ðu � sÞfðV � mÞs � ðr@ssÞ � ðV � sÞ½@ss� � rmg;

¼
Z

C
ðu � sÞðm � @sVÞðm � ½rm þ Sm�Þ � ½ðV � rÞu� � Sm þ ðu � sÞf�ðV � mÞjðs � rmÞ þ ðV � sÞjðm � rmÞg:

ð25Þ
The remaining term can be written as follows:
½ðV � rÞu� � m ¼ ðV � mÞ½ðm � rÞu� � m þ ðV � sÞ½@su� � m ¼ ðu � sÞðV � sÞ½�jm� � m ¼ �ðu � sÞðV � sÞj; ð26Þ
using previous results. The tangential component is given by
½ðV � rÞu� � s ¼ ðV � mÞ½ðm � rÞu� � sþ ðV � sÞ½@su� � s ¼ ðV � mÞ½ðm � rÞu� � s;
¼ ðV � mÞfRes � rm � ½ðs � rÞu� � mg ¼ ðV � mÞfRes � rm � ðu � sÞ½@ss� � mg;
¼ ðV � mÞfRes � rm þ jðu � sÞg:

ð27Þ
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So, Eq. (25) now becomes
dJ¼
Z

C
ðu �sÞ ðm �@sVÞðm � ½rmþSm�Þ�ðV �mÞjðs �rmÞþðV �sÞjðm �rmÞf g�½ðV �rÞu� �mðm �SmÞ� ½ðV �rÞu� � sðs �SmÞ

¼
Z

C
ðu �sÞ ðm �@sVÞðm � ½rmþSm�Þ�ðV �mÞjðs �rmÞþðV �sÞjðm �rmÞf gðu �sÞðV � sÞjðm �SmÞ�ðV �mÞ Res �rmþjðu � sÞf gðs �SmÞ

¼
Z

C
ðu �sÞ ðm �@sVÞm � ðrmþSmÞþj½ðV �sÞm � ðrmþSmÞ�ðV � mÞs � ðrmþSmÞ�f g�Re

Z
C
ðV � mÞðs �rmÞðs �SmÞ; ð28Þ
where we recall that u � s ¼ þ1 on Cþ and u � s ¼ �1 on C�. Note that integrating by parts gives the following result
dJ ¼
Z

C
½ðu � sÞ m � @sðrm þ SmÞ � 2js � ðrm þ SmÞf g � Reðs � rmÞðs � SmÞ�ðV � mÞ; ð29Þ
which is consistent with Theorem 1.

Remark 1. Even though (29) satisfies the structure theorem (see Theorem 1), Eq. (28) is more convenient because it requires
less regularity of the solution of the Navier–Stokes equations (8) and adjoint system (23). Thus, we actually use (28) in
computing dJ in our optimization algorithm (see Section 5). This requires more regularity of V but is compensated by solving
the variational problem in (43).
4.2. Computing the shape derivative of Q

Next, we compute the derivative of Q with respect to deforming the domain. We split the calculation into two pieces. Re-
call from (9) (in the wave frame):
Q Aðu;pÞ ¼
Z

X
1; Q Bðu; pÞ ¼

Z
X

u � e1; Qðu;pÞ ¼ Q A þ Q B: ð30Þ
By formula (17), we have
dQ AðX; VÞ ¼
Z
@X

V � m; dQ BðX; VÞ ¼
Z

X
u0 � e1 þ

Z
@X

u � e1ðV � mÞ; ð31Þ
Just as in Section 4.1.3, we need an adjoint problem.

4.2.1. Adjoint PDE for dQ B

Let Hð.; zÞ be the stress tensor defined in (22), where ð.; zÞ solves the following adjoint system:
� ½rz�yu� ðu � rÞz� ½r �H� ¼ e1; in X
r � z ¼ 0; in X
z ¼ 0; on C;

ð32Þ
where u solves (8) and ð.; zÞ satisfies periodic boundary conditions on CP.

4.2.2. Evaluating dQ B with the adjoint
In the following, we make use of (84) and the boundary conditions of (32):
Z

X
u0 � e1 ¼ �

Z
X
f½rz�yuþ ðu � rÞzg � u0 �

Z
X

u0 � ðr �HÞ;

¼
Z

X
fðu0 � rÞuþ ðu � rÞu0g � z�

Z
C
ðu0 � mÞðu � zÞ �

Z
@X

u0 � ðHmÞ þ
Z

X
ru0 : H;

¼
Z

X
fðu0 � rÞuþ ðu � rÞu0g � z�

Z
C

u0 � ðHmÞ þ
Z

X
r0 : rz;

¼
Z

X
fðu0 � rÞuþ ðu � rÞu0 � ½r � r0�yg � z�

Z
C

u0 � ðHmÞ þ
Z
@X

z � r0m;

¼ �
Z

C
u0 � ðHmÞ ¼ �

Z
C

_u � ðHmÞ þ
Z

C
½ðV � rÞu� � ðHmÞ;

ð33Þ
where we used (19) in the last line. Simplifying, we get:
Z
X

u0 � e1 ¼ �
Z

C
ðu � sÞ _s � ðHmÞ þ

Z
C
f½ðV � rÞu� � mðm �HmÞ þ ½ðV � rÞu� � sðs �HmÞg;

¼ �
Z

C
ðu � sÞ½ðm � @sVÞ þ ðV � sÞj�ðm �HmÞ þ

Z
C
ðV � mÞfRes � rm þ jðu � sÞgðs �HmÞ;

¼
Z

C
ðu � sÞf�ðm � @sVÞðm �HmÞ þ j½ðV � mÞðs �HmÞ � ðV � sÞðm �HmÞ�g þ Re

Z
C
ðV � mÞðs � rmÞðs �HmÞ;

ð34Þ
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where we used (26) and (27). Therefore, putting the above results together, we get
dQ ¼
Z

C
ðu � e1 þ 1ÞðV � mÞ þ

Z
C
ðu � sÞf�ðm � @sVÞðm �HmÞ þ j½ðV � mÞðs �HmÞ � ðV � sÞðm �HmÞ�g þ Re

Z
C
ðV � mÞðs � rmÞðs �HmÞ:

ð35Þ
Of course, we can obtain a formula that is consistent with Theorem 1 by integrating by parts:
dQ ¼
Z

C
ðu � e1 þ 1Þ þ ðu � sÞfm � @sðHmÞ þ 2jðs �HmÞg þ Reðs � rmÞðs �HmÞ½ �ðV � mÞ: ð36Þ
But Eq. (35) is more convenient in our optimization method (see Remark 1).
5. Optimization algorithm

We use a sequential quadratic programming (SQP) method to find a local minimizer X� in the set of admissible shapes O
(recall (11)). In other words, we solve for a shape flow that will deform the channel’s walls C in such a way as to reduce the
cost J subject to constraints on the average flux Q and area AðXÞ :¼ jXj. A related approach for gradient flows involving Lapla-
cian type PDE constraints can be found in [35,36]. Other approaches using level sets can be found in [37–41], as well as
boundary integral methods in [42–44]. See [45,31,29,34,46,47] for other methods.

5.1. Lagrange multipliers

In order to handle the constraint on the admissible shapes, we use Lagrange multipliers with the following Lagrangian
functional:

Definition 1. Let k;l 2 R and define the Lagrangian to be:
LðX; k;lÞ ¼ JðXÞ þ kðQðXÞ � CQ Þ þ lðAðXÞ � CAÞ: ð37Þ
L depends on ðu; pÞ; ðr;pÞ, and ðz;.Þ; we omit writing the explicit dependence on velocity and pressure to avoid excessive
notation.

The first order optimality conditions are given by
@L
@k
¼ ðQ � CQ Þ ¼ 0;

@L
@l
¼ ðA� CAÞ ¼ 0;

dLðX; k;l; VÞ ¼ dJðX; VÞ þ kdQðX; VÞ þ ldAðX; VÞ ¼ 0;

ð38Þ
where V is an arbitrary perturbation of C. Note: V is periodic on CP; only the boundary C is allowed to move. Next, plugging
in (28) and (35), performing some integration by parts, and rearranging gives:
0 ¼ dL

¼
Z

C
ðV � mÞ½ku � e1 þ kþ lþ ðu � sÞfm � @sðkHm þ rm þ SmÞ þ 2js � ðkHm � rm � SmÞg þ Reðs � rmÞ½s � ðkHm � SmÞ��; ð39Þ
which gives an optimality condition for the minimizing shape.

5.2. Newton’s method

Finding a solution to (38) can be accomplished (formally) by using a Newton method which consists of iteratively solving
the following Newton-KKT system [48]
d2LðV; �Þ dQðVÞ dAðVÞ

dQ yð�Þ 0 0

dAyð�Þ 0 0

2
664

3
775

u

k

l

2
664

3
775 ¼

�dLðVÞ

�ðQ � CQ Þ

�ðA� CAÞ

2
664

3
775; ð40Þ
where V can be thought of as an infinite-dimensional row index, and d2LðV;uÞ is the Hessian bilinear form. Solving (40) gives
a local perturbation u of the domain shape, which may reduce J but will also move toward satisfying the constraints. Iter-
ating this will create a flow that deforms the domain X in order to obtain a (local) solution of (12).
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In our method, we avoid computing d2LðV;uÞ by replacing it with a positive definite inner product over an appropriate
function space V:

Definition 2 (Shape Perturbation Space). Let H1ðCÞ be the usual Hilbert space [49,50] given by
H1ðCÞ ¼ v : C! R2 :

Z
C
jvj2 <1; and

Z
C
jrCvj2 <1

� �
; ð41Þ
where C is periodic. The perturbation space is taken to be a restriction of H1ðCÞ:
V ¼ v 2 H1ðCÞ : v ¼ 0; on CP \ C�; and v � e1 ¼ 0; on CP \ Cþ
n o

: ð42Þ
In other words, the shape is pinned at the lower left corner and the top wall is prevented from sliding in the e1 direction. This
restriction is needed to prevent the channel domain from rigidly translating and to keep the periodic boundary CP as a ver-
tical line segment.

Our algorithm involves solving the following variational formulation (instead of solving (40)):

Variational Formulation 1 (H1 Shape Perturbation). Assume that the curvature is point-wise bounded (i.e. j 2 L1ðCÞ) and
that the solutions of Eqs. (8), (23) and (32) are sufficiently regular (see Theorem 3) such that dJðVÞ, dQðVÞ, and dAðVÞ are well-
defined for all V in V. Then we solve the following variational formulation to obtain a perturbation of the shape: find u in V

and k;l in R such that
hV;uiV þ kdQðVÞ þ ldAðVÞ ¼ �dJðVÞ;
dQðuÞ ¼ �ðQ � CQ Þ;
dAðuÞ ¼ �ðA� CAÞ;

ð43Þ
for all V in V. The inner product is given by hV;uiV ¼
R

C V � uþ
R
CrCV : rCu.

Remark 2 (Cost Reduction). The solution u in (43) gives a perturbation for updating the shape which will try to decrease the
cost J while maintaining the constraints. To see why, set V ¼ u in (43). Assuming the current shape lies on the constraint
manifold (i.e. Q ¼ CQ ; A ¼ CA), combining the equations in (43) implies dJðuÞ ¼ �hu;uiV < 0 for u – 0.

Remark 3 (Solvability). The system (43) has a unique solution provided the following ‘inf-sup’ condition is true [51,52]:
sup
V2V

kdQðVÞ þ ldAðVÞ
kVkV

P c0ðjkj þ jljÞ; for all k;l 2 R; ð44Þ
which is equivalent [53] to the following condition:
the 2	 2 matrix
dQðVÞ dQðWÞ
dAðVÞ dAðWÞ

� �
is non-singular for suitably chosen functions V;W 2 V: ð45Þ
Proving (45) is not trivial due to the dependence of dQ on rm, Hm, and j. Note that for the trivial case when X is a rectangular
channel (horizontal walls C), the matrix in (45) is singular. This corresponds to the case where Q ¼ 0 and the velocity field is
zero in the fixed lab frame.

Remark 4 (Choice of V). Choosing V in Definition 2 ensures that (43) is well-defined. In particular, it is needed since dJðVÞ
and dQðVÞ involve tangential derivatives of V. Recall that this was done to avoid differentiating the stress terms (see Remark
1). The practical effect of this is to avoid taking unnecessarily small steps in our optimization routine as we deform X
towards an optimal shape (see our iterative algorithm in Section 5.3). This also prevents small scale oscillations from devel-
oping in the shape [31]. Thus, choosing the inner product space V in (42) acts as a pre-conditioner for our optimization algo-
rithm [35,36]. Ideally, one would like to choose hV;uiV ¼ d2LðV;uÞ as this would give a true Newton method (i.e. faster
convergence) but we avoid this for simplicity.
5.3. SQP method

Our algorithm is essentially an SQP method, where we have replaced the Hessian term by a positive definite bilinear form.
The details of our iterative method are described in Algorithm 1. Basically, one first computes the solutions to the Navier–
Stokes equation (8) and adjoint PDEs (23) and (32). Next, the shape derivatives are calculated and we solve (43) to obtain a
descent direction for changing the domain shape. Lastly, we use a line search (see Section 5.4) to update the domain shape.
This process is iterated until a desired convergence criteria is reached.
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Algorithm 1. Semi-Discrete Shape Flow

Define: X0 � XALL with partition @X0 ¼ C0 [ C0
P

Compute CQ :¼ QðX0Þ and CA :¼ AðX0Þ
Initialize Penalty: f0 :¼ 0
for k ¼ 0;1;2; . . . do

Solve Navier–Stokes: Let ðuk; pkÞ solve (8) on Xk. Let rk be the stress tensor

Solve First Adjoint: Let ðrk;pkÞ solve (23) on Xk. Let Sk be the stress tensor

Solve Second Adjoint: Let ðzk;.kÞ solve (32) on Xk. Let Hk be the stress tensor

Compute curvature jk of Ck

Compute dJ; dQ , and dA using jk; rk; Sk, and Hk

Solve For Shape Perturbation: Let ðukþ1; kkþ1;lkþ1Þ solve (43) on Ck

Extend Velocity: Create a smooth periodic extension of ukþ1 to all of Xk (necessary because of the interior mesh)
Line Search: Execute Algorithm 2 to compute step size akþ1

Update Shape: Let xkþ1 :¼ xk þ akþ1ukþ1ðxkÞ, for all points xk in Xk � Rd

Define Xkþ1 :¼ fxkþ1 2 Rdg
end for
The fully discrete algorithm follows directly from Algorithm 1. One need only apply a spatial discretization when solving
each PDE (see Section 6). A convergence criteria can be based on the relative change in the cost J between successive iter-
ations or on the relative change in the shape of X.

5.4. Line search with merit function

The optimization process in Algorithm 1 may produce iterates that violate the constraints. Therefore, we must balance
reducing the cost versus violating the constraints. This can be done by choosing the step size at each iteration through a mer-
it-function based line search criteria [48]. Consider the following merit function:
hðX; fÞ ¼ JðXÞ þ fðjQðXÞ � CQ j þ jAðXÞ � CAjÞ; ð46Þ
where f is a penalty parameter for the constraint violation and is updated at each optimization step. At the kth optimization
step, we define a step size a to be acceptable if
hðXkþ1ðaÞ; fkþ1Þ 6 hðXk; fkþ1Þ þ nadhðXk; fkþ1; uÞ; n 2 ½0;1�; ð47Þ
where dh is the shape derivative of h, fkþ1 is sufficiently large, u is the current descent direction, and we use the abuse of
notation Xkþ1ðaÞ :¼ Xk þ au to denote the domain update. Our line search method is described in Algorithm 2.

Algorithm 2. Line Search With Merit Function

1: Set parameter n

2: Input: Xk; ðukþ1; kkþ1;lkþ1Þ, and fk

3: Update Penalty: fkþ1 :¼maxðfk; jkkþ1j; jlkþ1jÞ
4: Compute hðXk; fkþ1Þ by (46) and dhðXk; fkþ1; ukþ1Þ by (48)
5: Initialize: akþ1 :¼ 1, ACCEPT :¼ FALSE.
6: while ACCEPT = FALSE do

7: Compute Xkþ1ðakþ1Þ :¼ Xk þ akþ1ukþ1

8: Compute hðXkþ1; fkþ1Þ by (46)

9: if hðXkþ1; fkþ1Þ 6 hðXk; fkþ1Þ þ nakþ1dhðXk; fkþ1; ukþ1Þ then
10: ACCEPT :¼TRUE
11: else
12: akþ1 :¼ akþ1=2
13: end if
14: end while

15: return akþ1 and fkþ1

Updating the penalty parameter by fkþ1 :¼maxðfk; jkkþ1j; jlkþ1jÞ guarantees that dhðXk; fkþ1; ukþ1Þ 6 0 by the following
theorem.
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Theorem 2. Let ðukþ1; kkþ1;lkþ1Þ be generated by Algorithm 1; in particular, ðukþ1; kkþ1;lkþ1Þ is a solution of the variational
problem (43). Then, for f P 0, the shape derivative of hðXk; fÞ (46) in the direction ukþ1 is given by
dhðXk; f; ukþ1Þ ¼ dJðukþ1Þ � fðjQðXkÞ � CQ j þ jAðXkÞ � CAjÞ: ð48Þ
Moreover, we have that
dhðXk; f; ukþ1Þ 6 �hukþ1;ukþ1iV � ðf�maxðjkkþ1j; jlkþ1jÞÞðjQðXkÞ � CQ j þ jAðXkÞ � CAjÞ: ð49Þ
Proof. The proof of the finite dimensional version can be found in [48, Theorem 18.2]. For the infinite-dimensional setting,
one must assume that the functionals J and Q are sufficiently smooth (and analytic) with respect to the flow parameter s
(recall Section 3.1) so that a Taylor expansion in a makes sense. h

Computing dhðXk; f; ukþ1Þ (48) is straightforward by using previously known quantities.

6. Finite element method

The finite element method [54–56,51,52] offers a flexible way of solving the Navier–Stokes system (8) and adjoint prob-
lems (23) and (32), in addition to computing the sensitivities and a descent direction for deforming the domain. We note
here that accuracy in computing the PDE solutions is especially important to ensure consistency between J and dJ (likewise,
Q and dQ). For example, our discrete approximation of the continuous level dJ equation may not accurately represent
changes in the discrete approximation of J if our discretization is too coarse. Thus, it is important that a sufficiently fine grid
is used especially at higher Reynolds numbers.

In the following sections, we describe our method of computing the PDE solutions, the shape derivatives (28), (35), and
the solution of (43).

6.1. Solving Navier–Stokes and adjoint systems

We use a mixed finite element method for solving the periodic Navier–Stokes system (8) and for the adjoint systems (23)
and (32).

6.1.1. Velocity and pressure discretization
We denote a discrete approximation of the domain by Xh and partition it into a set of triangles labeled by >Xh

and dis-
cretize velocity and pressure by the Taylor–Hood element
Uh :¼ fu 2 CðXhÞ : ujT 2 P2ðTÞ;8T 2 >Xh
g;

Ph :¼ fp 2 CðXhÞ : pjT 2 P1ðTÞ;8T 2 >Xh
g;

ð50Þ
i.e. vector piecewise quadratic polynomials for velocity and piecewise linear polynomials for pressure. We solve the Navier–
Stokes system using a Newton iteration. Details can be found in [54–56,51,52].

6.1.2. Enforcing the tangential boundary condition
In order to enforce the boundary condition u ¼ �s on C, we use an averaging technique. First, let Ch be the top and bottom

walls of the polygonal boundary of Xh and partition it into a set of edges denoted SCh
(this set of edges is inherited from >Xh

).
Define the piecewise linear space Bh
Bh :¼ fv 2 CðChÞ : vjE 2 P1ðEÞ; 8E 2 SCh
g; ð51Þ
i.e. the set of vector piecewise linear functions over the boundary Ch. Denote the unit tangent vector of Ch by sh which is
piecewise constant. Now define a piecewise linear approximation of the tangent vector s of C in the following way. Let
ŝ 2 Bh and xi be the position of a vertex of Ch with adjacent edges labeled as E�i and Eþi . The nodal values of ŝ are given by:
fi :¼ jEþi j
jE�i j þ jE

þ
i j

shjE�i þ
jE�i j

jE�i j þ jE
þ
i j

shjEþ
i
; ) ŝðxiÞ :¼ fi

jfij
ð52Þ
i.e. a local average of the piecewise constant tangent vector which is then normalized. Without the normalization, equation
(52) is similar to the so-called gradient recovery formula [57–59], except it is applied to the tangential derivative of a param-
etrization of Ch, namely sh. From [57–59], and provided C is a C3 curve, it is straightforward to show that
ks� ðŝ 
 FÞkL1ðCÞ 6 Ch2
;

where F : C! Ch is a continuous, piecewise smooth locally defined map [60]. Thus, it is advantageous to enforce the bound-
ary condition in (8) using the approximation of the tangent vector ŝ. One can also use the L2ðChÞ projection of sh onto Bh; this
has the same order of accuracy as the method in (52), but is a little more expensive because a mass matrix must be inverted.
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6.1.3. Finite element discretization error
We will use the following result [54,52] in Section 6.2 to estimate the error in approximating the boundary stress.

Theorem 3. Suppose there exists a unique solution ðu; pÞ of (8) in the sense of distributions with the following regularity:
u 2 H3ðXÞ; p 2 H2ðXÞ: ð53Þ
Then we have the following error estimate for the Taylor–Hood element (50):
ku� uhkH1ðXÞ þ kp� phkL2ðXÞ 6 Ch2ðkukH3ðXÞ þ kpkH2ðXÞÞ; ð54Þ
where C is an independent constant and h is the maximum size of an edge in the mesh >Xh
.

Remark 5. The regularity assumption in (53) is guaranteed if the domain is C3 [61]. In our numerical results (see Section 7),
the domain shapes appear to be smooth. Lastly, the Navier–Stokes and adjoint equation solvers were tested against a known
exact solution to confirm the error decay given by (54).
6.2. Stress approximation

Computing the shape derivatives, namely dJ and dQ , requires the stresses on the boundary rm; Sm, and Hm. In our method,
we use an L2 type projection property similar to [62,63]. For computing rm, we have the following weak formulation of (8):
Z

C
ðrmÞ � v ¼

Z
X
½ðu � rÞu� � v þ

Z
X

rðu;pÞ : rv; for all v 2 ½H1ðXÞ�2; ð55Þ
where ðu; pÞ is the solution of (8). At the discrete level, the right hand side of (55) can be viewed as given data and rm is trea-
ted as an unknown. To state the discrete variational formulation of (55), we need the following finite element space:
Wh :¼ v 2 CðXhÞ : vjT 2 P1ðTÞ; 8T 2 >Xh
; and v ¼ 0 at all interior nodes

� �
; ð56Þ
i.e. the set of vector piecewise linear functions over the triangulation >Xh
with all interior nodal values set to zero. Recall the

definition of Bh (51); note that Bh is the restriction of Wh to the boundary Ch. Therefore, given the discrete solution ðuh; phÞ,
find a discrete approximation of the boundary stress ðrmÞh 2 Bh such that
Z

Ch

ðrmÞh � vh ¼
Z

Xh

½ðuh � rÞuh� � vh þ
Z

Xh

rh : rvh; for all vh 2Wh; ð57Þ
where rh ¼ �Iph þ ð1=ReÞDðuhÞ. This gives a square mass matrix on the left side which is trivial to invert compared to solving
(8), (23), (32). Computation of the boundary stresses ðSmÞh and ðHmÞh is done similarly.

Using averaging, least-squares, and L2-type projections to compute stresses is a classical technique in the finite element
literature; for instance, see [64,65]. Our approximation of the boundary stress is based on a method in [62,63] which was
used to compute the boundary flux for Laplace’s equation given the discrete solution of the Dirichlet problem. Following
a similar outline as in [63], we derive error estimates for the boundary stress approximation (57) in the following sections.
More recent methods of post-processing the solution to obtain flux information over the entire domain can be found in [66].

6.2.1. Preliminary estimates
In the following, we require that >Xh

be a quasi-uniform, shape regular triangulation of X (see [55,56]). We also assume
that Xh ¼ X to avoid unnecessary technicalities (see Remark 6).

Lemma 1 (trace inverse estimate). Let S> ¼ S>ðX;hÞ denote a strip of triangles in >Xh
such that each triangle T 2 S> has at least

one vertex on C. Let vh 2Wh. Then,
krvhkL2ðS>Þ 6 Ch�1=2kvhkL2ðCÞ;

kvhkL2ðS>Þ 6 Ch1=2kvhkL2ðCÞ;
ð58Þ
where C is a constant independent of h.

Proof. Using basic inverse estimates [55,56] (i.e. norm equivalence on finite dimensional spaces) gives the assertion
[63]. h

Lemma 2. The following interpolation estimates hold:
Z
C
ðrm � IðrmÞÞ � vh 6 Ch3=2ðkukH3ðXÞ þ kpkH2ðXÞÞkvhkL2ðCÞ; ð59Þ
where I is the interpolation operator onto Bh.
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Proof. The Bramble–Hilbert lemma [56] gives
krm � IðrmÞkL2ðCÞ 6 Ch3=2krmkH3=2ðCÞ: ð60Þ
Then using standard Sobolev embedding [50] and the smoothness of the domain (see Remark 5) gives
Z
C
ðrm � IðrmÞÞ � vh 6 krm � IðrmÞkL2ðXÞkvhkL2ðCÞ 6 Ch3=2ðkukH3ðXÞ þ kpkH2ðXÞÞkvhkL2ðCÞ: �
Lemma 3. Suppose that vh 2Wh. Then the following estimate holds
Z
C
ðrm � ðrmÞhÞ � vh 6 Ch3=2ðkukH3ðXÞ þ kpkH2ðXÞÞkvhkL2ðCÞ: ð61Þ
Proof. Using the variational forms (55) and (57), we have that
Z
C
ðrm � ðrmÞhÞ � vh ¼

Z
X
ðr� rhÞ : rvh þ

Z
X
½ðu � rÞu� � ½ðuh � rÞuh�ð Þ � vh

¼ �
Z

X
ðp� phÞr � vh þ

1
Re

Z
X
ðDðuÞ � DðuhÞÞ : rvh þ

Z
X
½ðu� uhÞ � ru� þ ½ðuh � rÞðu� uhÞ�ð Þ � vh

6 C2 kp� phkL2ðXÞ þ
1
Re
kru�ruhkL2ðXÞ

� 	
krvhkL2ðS>Þ þ ku� uhkH1ðXÞkrukL2ðXÞkvhkH1ðS>Þ

þ kuhkH1ðXÞkru�ruhkL2ðXÞkvhkH1ðS>Þ

6 C3h2ðkukH3ðXÞ þ kpkH2ðXÞÞkvhkH1ðS>Þ  by Eq: ð54Þ

6 C4h3=2ðkukH3ðXÞ þ kpkH2ðXÞÞkvhkL2ðCÞ  by Lemma 1: ð62Þ
Note: we used the classical fact that (see [52,67])
Z
X
½ðw � rÞu� � v










 6 CkwkH1ðXÞkrukL2ðXÞkvkH1ðXÞ: �
Remark 6. For the case where the discrete domain only approximates the true domain ðXh – XÞ, one must account for the
difference by considering a locally defined map F : X! Xh and use a variational crime argument [56,68,60]. It can be shown
that the error due to approximating the domain with a polygon is Oðh2Þ.
6.2.2. Boundary stress error estimate

Theorem 4. Let the solution ðu; pÞ of (8) satisfy the regularity property (53). Assume the finite element mesh is shape regular and
quasi-uniform. If the boundary stress is approximated by (57), then
krm � ðrmÞhkL2ðCÞ 6 Ch3=2ðkukH3ðXÞ þ kpkH2ðXÞÞ: ð63Þ
Proof. First, using (61) and (59), we get
kðrmÞh � IðrmÞk2
L2ðCÞ ¼

Z
C
ððrmÞh � rmÞ � ððrmÞh � IðrmÞÞ þ

Z
C
ðrm � IðrmÞÞ � ððrmÞh � IðrmÞÞ

6 C1h3=2ðkukH3ðXÞ þ kpkH2ðXÞÞkðrmÞh � IðrmÞkL2ðCÞ; ð64Þ
which implies kðrmÞh � IðrmÞkL2ðCÞ 6 C1h3=2ðkukH3ðXÞ þ kpkH2ðXÞÞ. Together with (60), we get
krm � ðrmÞhkL2ðCÞ 6 krm � IðrmÞkL2ðCÞ þ kIðrmÞ � ðrmÞhkL2ðCÞ 6 C2h3=2ðkukH3ðXÞ þ kpkH2ðXÞÞ: �
Remark 7. Implementation of (57) is straightforward. The finite element matrices, using the Taylor–Hood element, are
already assembled when solving (8). One need only combine the rows of the discrete column vector representing the right
hand side of (8) appropriately to reduce the test function vh from piecewise quadratic to piecewise linear.

The error analysis given here can be modified to obtain an error estimate of Oðh2 lnð1=hÞÞ if the solution is more regular,
i.e. ðu; pÞ 2W3;1ðXÞ 	W2;1ðXÞ [69] (see [63] in the case of Laplace’s equation). In our numerical tests of convergence, we
first computed a discrete solution of (8) (when the exact solution is C1) and then computed ðrmÞh from (57) using the
discrete solution of (8). In this case, we appear to get Oðh2Þ in L2ðCÞwhen comparing the approximation ðrmÞh to the exact C1

solution.
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6.3. Curvature approximation

We also use an L2 projection for computing the curvature, which takes advantage of the variational structure of the cur-
vature vector jm. This follows by multiplying equation (76) by a smooth test function v and integrating by parts:
Table 1
List of d
The rig
occlusio
asymm
compar

Occ.

1
2
3
4
5

Z
C
jm � v ¼

Z
C
�DCX � v ¼

Z
C
rCX : rCv ¼

Z
C
rC � v: ð65Þ
The last term in Eq. (65) makes sense even when C is a polygonal curve. Hence, our finite element method for computing
curvature is the following. Recall the finite element space Bh and define the following discrete variational problem: find
K 2 Bh (a piecewise linear approximation of the curvature) such that
Z

Ch

K � v ¼
Z

Ch

rC � v; 8v 2 Bh: ð66Þ
Similarly to the previous section, this gives a mass matrix on the left side of (66) that is cheap to invert. If we assume that Ch

interpolates an underlying smooth curve, then this approximation of the curvature appears to be Oðh2Þ in the L2ðCÞ norm by
our own numerical tests. This type of approximation is analyzed in [70].

6.4. Computing the descent direction

The system in (43) is a standard saddle point system and can be solved by straightforward techniques. The finite element
space Vh � V is given by (51): Vh :¼ Bh. More details can be found in [55,56,51].

6.5. Method for deforming the domain

The shape perturbation u that solves (43) is only defined on the upper and lower walls C of the domain X. Since the do-
main is partitioned into a set of triangles, we must extend u to all of X in order to update the interior mesh properly. We do
this in two steps. First, we define u on the periodic boundary CP of X by linear interpolation of u between CP \ C� and
CP \ Cþ, which acts to vertically stretch/compress CP. This fully defines u on @X. Second, we extend u by letting uext solve
the following vector Laplace equation (harmonic extension) [71]:
� Duext ¼ 0; in X;

uext ¼ u; on @X:
ð67Þ
This will not affect the updated shape of the domain (because uext ¼ u on C). It is a classical result that the solution of (67)
minimizes

R
X jruextj

2 [49], which is desirable because large gradients in the velocity cause mesh distortion [71]. This allows
for smoothly updating the mesh node positions in the interior at each optimization step. However, after several steps the
mesh may still become distorted, so we use an optimization based mesh smoothing method every few iterations [72].

Of course, in the case of large deformations even these methods will fail. Thus, whenever the mesh quality [73] gets suf-
ficiently bad, we re-mesh the domain using the program ‘Triangle’ [74].

7. Numerical results

In our numerical experiments, we introduce a non-dimensional scaling of the cost functional J:
Jscaled :¼ Re
50

J: ð68Þ
We use this scaling uniformly for all our experiments so that Jscaled and Q have the same order of magnitude (note that J con-
tains 1=Re by the definition (2) of r). This ensures that the terms in the merit function (46) have similar weight. If the cost
ifferences in the optimized power. The left side gives the percent difference between the symmetric and asymmetric solutions, i.e. ðJsym � JasymÞ=Jasym.
ht side gives the percent difference between the flat bottom wall and asymmetric solutions, i.e. ðJflat � JasymÞ=Jasym. All differences are positive (except
n index 1, Re ¼ 20) which means that the symmetric and flat bottom wall case is more costly in terms of input fluid power. This indicates that the

etric case is better able to minimize the viscous dissipation. For the anomalous case, the asymmetric and symmetry enforced shapes are very close;
e occlusion index 1 of Fig. 3(b) with Fig. 9(b). Also note the difference is very small.

index Symmetry enforced Flat bottom wall

Re ¼ 0:01 (%) Re ¼ 20 (%) Re ¼ 200 (%) Re ¼ 500 (%) Re ¼ 0:01 (%) Re ¼ 20 (%) Re ¼ 200 (%) Re ¼ 500 (%)

2.97 �0.36 1.01 15.4 1.33 0.40 0.77 0.23
8.83 3.45 7.10 13.5 5.22 1.38 0.30 0.66

32.1 29.1 14.2 23.2 24.8 22.9 2.30 3.13
24.5 24.8 30.8 84.3 13.0 13.6 4.10 4.07
43.5 41.9 51.4 92.3 9.70 8.50 2.35 4.14
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(a) Re = 0.01: Initial Guess (left) and Optimized Shape (right).
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(b) Re = 20: Initial Guess (left) and Optimized Shape (right).

Fig. 3. Optimization for five different initial shapes and fluxes (asymmetric initial condition) with Reynolds number at (a) Re ¼ 0:01 and (b) Re ¼ 20. Each
plot window is a unit square in non-dimensional units. The left column in each sub-figure is the initial guess for the shape; the right column is the shape
obtained by our optimization algorithm. Each row, indexed 1–5 by increasing occlusion, corresponds to a desired amount of flux QðXÞ ¼ CQ with increasing
flux towards the bottom. The area constraint in each case is AðXÞ ¼ CA ¼ 0:4. The rate of energy dissipation Jscaled and average flux Q is stated underneath
each plot. The interior curves of each shape represent streamlines of the flow referenced to the moving wave frame.
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(a) Re = 200: Initial Guess (left) and Optimized Shape (right).
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(b)Re = 500: Initial Guess (left) and Optimized Shape (right).

Fig. 4. Optimization for five different initial shapes and fluxes (asymmetric initial condition) with Reynolds number at (a) Re ¼ 200 and (b) Re ¼ 500. Same
format as in Fig. 3.
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and constraints are not scaled similarly, then it can adversely affect the convergence rate of our optimization algorithm [48].
Of course, we also scale dJ by Re/50.

For all numerical tests, we set n ¼ 0 in (47). In our backtracking line search routine, we set a minimum acceptable step
size of amin :¼ 5	 10�6. In most of our numerical runs, we never achieve the minimum step size; we usually find



Fig. 5. Optimization results for the asymmetric case with both walls free. Plots of (a) flux Q, (b) power Jscaled, and (c) efficiency geff :¼ Q=Jscaled are given
versus the occlusion of the channel (index = 1 means low occlusion; index = 5 means high occlusion). Four cases Re ¼ 0:01;20;200;500 are plotted for each
occlusion index; the same legend notation is used in all three plots. The values plotted here correspond to the final shapes resulting from our optimization
algorithm (see Figs. 3 and 4). In part (a), note the linear relationship between occlusion and average flux. Also note that Q is the non-dimensional flux, thus it
is independent of the Reynolds number.
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Fig. 6. Variation of relevant quantities for the case in Fig. 4(a), occlusion index 5 at Re ¼ 200. Plots of (a) power Jscaled, (b) flux Q, and (c) area A are shown
versus the optimization iteration index. In plots (b) and (c), a dashed line denotes the desired value. The input power is reduced by �46% of the initial
amount. Violation of the flux and area constraints at the last iteration is +0.0037% and �0.0022% of the desired values, respectively. The ‘kink’ in part (a), at
iteration index � 85, corresponds to a sudden change in the way the shape is evolving (i.e. a better path in shape space is found to decrease the cost). Note
how the merit function (46) allows for the constraints to be violated in the first 100 iterations, but eventually brings the evolving shape back to the
constraint manifold.

S.W. Walker, M.J. Shelley / Journal of Computational Physics 229 (2010) 1260–1291 1277
a � 0:1—0:01. One cause of taking very small steps is that the Navier–Stokes and adjoint PDE’s are not solved accurately en-
ough, which can lead to an inconsistency between J and dJ (similarly for Q and dQ). In other words, this can cause the opti-
mization routine to become ‘stuck’. If we reach the minimum step size for more than two iterations, we uniformly refine the
mesh to increase accuracy in solving the PDEs and continue with the optimization; this avoids becoming stuck. Another
cause of taking very small steps is an inappropriate choice of the function space V (42). We experimented with using the
space L2ðCÞ for V and found that this forces the optimization to take extremely small steps to avoid developing oscillations
in the shape. Recalling the discussion in Remark 4, this is a crucial instance where knowing the continuous level functional
sensitivities dJ; dQ is able to benefit the optimization algorithm (i.e. the choice of V).

We define an efficiency for peristaltic pumping by
geff :¼ Q
Jscaled

: ð69Þ
Eq. (69) is different than the standard definition geff ¼ Dp � Q=Jscaled [26,19] because our problem does not have a net rise in
pressure per wavelength of the channel (i.e. we are in the free-pumping regime).

We present a variety of applications for our optimization method. Section 7.1 shows several cases for a range of Re where
the initial domain shape is not symmetric top-bottom and the top and bottom walls Cþ and C� are free to evolve in order to
reduce the cost J. Here, we find that the resulting shapes are far from symmetric. In Section 7.2 we explicitly enforce sym-
metry, so only the top wall moves, and we find that the input fluid power is much larger than the previous case (up to 92%
higher, see Table 1). Section 7.3 is similar to the first case, except we fix the bottom wall to be horizontal and only allow the
top wall to evolve. Lastly, Section 7.4 shows the optimization of a double peaked initial shape. All simulations were run until
the reduction of the cost J appeared to saturate and the relative change in the power was less than 0.001% of the initial cost
and the constraint violation for both flux and area was less than 0.1% of the desired values.





Fig. 8. Vorticity (color) plots for two final shapes from Fig. 4. Both ‘waves’ propagate towards the right in the fixed lab frame. In part (a), the final shape has
trapped a large rotating bolus of fluid in a ‘bag-like’ region. Part (b) shows a medium desired flux case with vorticity concentrated at the top wall. Note that
neither wave shape (i.e. the top wall) is the graph of a function.
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In all cases, the desired domain area is CA ¼ 0:4 and the initial guess for the shape satisfies this. The desired flux CQ is
taken to be the average flux for the initial shape. The streamlines of the flow (plotted with respect to the moving wave frame)
are also shown. Note the lack of symmetry (top/bottom) between the channel walls. This becomes very pronounced for lar-
ger fluxes (see the bottom two rows of Figs. 3 and 4) where the top wall is no longer the graph of a function. Moreover, the
streamlines for the higher flux cases show the presence of two vortices (in the initial shape of the channel) which implies
that the viscous dissipation J is large. Our optimization algorithm reduces J by deforming the walls so as to isolate a single
bolus of fluid, which propagates towards the right in the fixed lab frame. It is clear that this configuration is favorable for
reducing J by reducing the symmetrized form of the velocity gradient (see Fig. 7 for an illustration of the change in the flow
field as the optimization progresses).

In row 3 of Fig. 3, it appears that the final shape of the walls is close to two out of phase sine waves. It has been shown in
the literature (for instance, see [9]) that the average flux in peristaltic pumping for two sine waves that are perfectly out of
phase is close to zero in the long wavelength regime. However, the domain shapes in our experiments do not fall under the
long wavelength assumption. But it is interesting that in the ‘short’ wavelength regime such an arrangement can now appear
as an optimal solution.

There is also an asymmetry that develops as the Reynolds number increases. For instance, note the difference in the final
shape between Figs. 3 and 4 for occlusion index 3. Also, the streamlines become more asymmetric with increasing Re for all
cases. However, despite the broken left/right symmetry, the final shapes for the higher flux cases (rows 4 and 5) are remark-
ably similar for the range of Reynolds numbers considered here. For low Reynolds number, see Fig. 3(a), the final shapes are
left-right symmetric which is a consequence of the reversibility of Stokes flow. In row 5 of Fig. 3(a), the final shape is offset
from the exact center. In our optimization runs, we noticed a small amount of ‘sliding’ of the shape in a few cases. However,
this is only a superficial effect because all peristaltic pumping shapes are invariant under translation in the e1 direction (be-
cause of periodicity). We believe this is due to discretization error, especially since the meshes used to represent X are
unstructured with no underlying symmetry.

In Fig. 5, we plot the flux, input fluid power (or rate of viscous dissipation), and the pumping efficiency versus the occlu-
sion index for all four cases of Reynolds number (referring to Figs. 3 and 4). Note that the amount of occlusion is directly
proportional to the flux. The input power also increases with occlusion for low Reynolds number, but peaks at index 3 for
Re ¼ 500. There is also a peak in the efficiency for Re ¼ 0:01 and 20 at occlusion index 3. The efficiency improves with
increasing channel occlusion for higher Reynolds